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ABSTRACT

A concise synthetic approach for constructing the oxapentacyclic framework of cortistatin A is described. The synthesis features a furan-oxyallyl
[4 + 3] cycloaddition and double-intramolecular aldol reactions. In addition, an interesting core structure was obtained in 11 steps from furan
by using our method.

Cortistatins, containing a common unprecedented [6.7.6.5]
oxapentacyclic [or termed as 9-(10,19)-abeo-androstane]
skeleton, were isolated from the marine sponge Corticium
simplex by Kobayashi and co-workers and were found to
possess potent antiangiogenic and antiproliferative activities
against human umbilical vein endothelial cells (HUVECs).1

Among these natural substances, cortistatin A (1, Figure 1a)
demonstrated the strongest antiproliferative activity (IC50 )
1.8 nM) against HUVECs. It also had a selectivity index
that was 3000 times different from that of normal fibroblasts
and various tumor cell lines. The unique structural charac-

teristics and remarkable pharmacological profiles of cortist-
atins have spurred synthetic chemists to develop efficacious
and practical synthetic routes to them for further biological
investigations.2 Until now, elegant semi-, total, and formal
syntheses of 1 have been accomplished by the teams of
Baran,3 Nicolaou,4 Shair,5 Hirama,6 Sarpong,7 and Myers,8

respectively, and synthetic studies toward the construction
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of 1 have been conducted by a number of research groups.9

Moreover, certain novel cortistatin analogues have been
synthesized and their biological activities evaluated.4b,10

Furan-involving [4 + 2] cycloaddition was utilized in the
core construction studies by both Yang9i and Magnus.9j We
envisaged that a core structure of cortistatin A (1) such as 5
(Figure 1b) may be rapidly assembled via a furan-oxyallyl
[4 + 3] cycloaddition9d (2 f 3) and double-intramolecular
aldol reactions (4 f 5).

As outlined in Scheme 1, furan was alkylated to afford
the known intermediate 6,11 which was lithiated at C-5 and
reacted with ketone 712 followed by hydrolysis to give enone
8 in 85% yield over two steps. Stereoselective reductive
R-allylation13 of the cyclopentenone moiety in 8 led ef-
fectively to ketone 9 with a quaternary carbon center (49%)
via a three-step sequence consisting of (i) Birch reduction
(Li/NH3 (l), THF, -78 °C), (ii) thermodynamic enol silyl
ether formation (TMSI, HMDS, DCM, 0 °C to rt), and (iii)

regiospecific enolate generation and subsequent alkylation
(MeLi, THF, 0 °C; allyl bromide, THF, rt). Treatment of 9
with ethylene glycol in the presence of TsOH in toluene at
reflux furnished acetal 2 in 86% yield.

With 2,5-disubstituted furan derivative 2 in hand, the [4
+ 3] cycloaddition14 was extensively investigated under a
series of conditions (Scheme 2). Although the cycloaddition

reaction (under improved Föhlisch’s conditions15) seemed
to generate slightly less of the desired cycloadduct 3 than
the other isomer 3′ after reductive dehalogenation, the
combined yield of both stereoisomers reached as high as 96%
(entry 3). The highest yield of 3 (46%) was obtained when
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Figure 1. Structural features of cortistatin A and synthetic strategy
for core structure 5.

Scheme 1. Synthesis of Furan Derivative 2

Scheme 2. Intermolecular [4 + 3] Cycloaddition of 2
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2 was treated with 1,1,3-trichloroacetone (5 equiv) and
triethylamine (10 equiv) in 1,1,1,3,3,3-hexafluoro-2-propanol
(entry 5).

Both 3 and 3′ were further converted into more advanced
intermediates with an attractive [6.7.6.5] tetracarbocyclic
framework (Scheme 3). Upon terminal alkene dihydroxyla-

tion, internal alkene hydrogenation, and vicinal diol cleav-
age,16 ketodialdehyde 4 was formed from triene 3 in 68%
overall yield. Condensation parameters such as the substrate
concentration, the base, the solvent, and the reaction time

were carefully scrutinized for the double-aldol reaction (see
the table at the bottom of Scheme 3). The best yield (82%)
for tetracarbocycle 10 was obtained when 4 (0.02 M) was
exposed to K2CO3 (5 equiv) in MeOH for 30 min (entry 5).
In this case, the double dehydration product (dienone 11,
∆1,10,9,11) was not observed, which turned out to be a superior
result since hydroxy enone 10 may be a better substrate for
further structural manipulations than dienone 11. The struc-
ture of 10 was unambiguously confirmed by X-ray crystal-
lographic analysis. Analogously, triene 3′ was transformed
into ketodialdehyde 4′ in three steps, while the overall yield
was slightly higher (71%) compared to that of 4. Double
aldol reaction of 4′ in the presence of K2CO3 in MeOH for
2 days resulted in double cyclization to furnish 10′ (48%)
as a single isomer, although the relative configuration for
the newly formed stereogenic centers in 10′ remains uncertain
at this stage.17

In summary, we have described a short synthetic approach
for constructing the oxapentacyclic framework of cortistatin
A featuring a furan-oxyallyl [4 + 3] cycloaddition9d and
double-intramolecular aldol reactions. Core structure 10, as
well as isomeric 10′, was obtained in 10 steps from the
known furan derivative 6 or in 11 steps from furan. The
current strategy has the full potential to lead to a total
synthesis due to the proper arrangement of the desired
functionalities in our target molecule that are amenable for
further elaborations.
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Note Added after ASAP Publication. This paper was
published ASAP on October 6, 2010. The structure of
cortistatin A (1) was corrected in the Abstract and TOC
graphics and in Figure 1. The revised paper was reposted
on October 18, 2010.
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Scheme 3. Synthesis of Core Structures 10 and 10′
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